Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Plant Cell Rep ; 43(4): 110, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564104

RESUMO

KEY MESSAGE: Nanoparticle pretreatment improved the health of aged Cajanus cajan seeds viz., regulation of redox status, gene expression, and restoration of hormonal homeostasis. Ageing deteriorates the quality of seeds by lowering their vigor and viability, and terminating with loss of germination. These days, nanotechnology has been seen to revolutionize the agricultural sectors, and particularly nano zinc oxide (nZnO) has gained considerable interests due to its distinctive properties. The aim of the present work was to decipher the possibilities of using nZnO to rejuvenate accelerated aged (AA) seeds of Cajanus cajan. Both chemically (CnZnO) and green (GnZnO; synthesized using Moringa oleifera) fabricated nZnOs were characterized via standard techniques to interpret their purity, size, and shape. Experimental results revealed erratic germination with a decline in viability and membrane stability as outcomes of reactive oxygen intermediate (ROI) buildup in AA seeds. Application of nZnO substantially rebated the accrual of ROI, along with enhanced production of antioxidants, α-amylase activity, total sugar, protein and DNA content. Higher level of zinc was assessed qualitatively/ histologically and quantitatively in nZnO pulsed AA seeds, supporting germination without inducing toxicity. Meantime, augmentation in the gibberellic acid with a simultaneous reduction in the abscisic acid level were noted in nZnO invigorated seeds than that determined in the AA seeds, suggesting possible involvement of ROI in hormonal signalling. Furthermore, nZnO-subjected AA seeds unveiled differential expression of aquaporins and cell cycle regulatory genes. Summarizing, among CnZnO and GnZnO, later one holds better potential for a revival of AA seeds of Cajanus cajan by providing considerable tolerance against ageing-associated deterioration via recouping the cellular redox homeostasis, hormonal signaling, and alteration in expression patterns of aquaporin and cell cycle regulatory genes.


Assuntos
Aquaporinas , Cajanus , Óxido de Zinco , Óxido de Zinco/farmacologia , Genes Reguladores , Ciclo Celular
2.
Int. microbiol ; 27(2): 477-490, Abr. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-232294

RESUMO

Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.(AU)


Assuntos
Humanos , Microbiologia do Solo , Agricultura/métodos , Bactérias , Cajanus/microbiologia , Ecossistema , Solo/química
4.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354689

RESUMO

The SPL gene family (for Squamosa Promoter-binding like Proteins) represents specific transcription factors that have significant roles in abiotic stress tolerance, development and the growth processes of different plants, including initiation of the leaf, branching and development of shoot and fruits. The SPL gene family has been studied in different plant species; however, its role is not yet fully explored in pigeon pea (Cajanus cajan ). In the present study, 11 members of the CcSPL gene family were identified in C. cajan . The identified SPLs were classified into nine groups based on a phylogenetic analysis involving SPL protein sequences from C. cajan , Arabidopsis thaliana , Cicer arietinum , Glycine max , Phaseolus vulgaris , Vigna unguiculata and Arachis hypogaea . Further, the identification of gene structure, motif analysis, domain analysis and presence of cis -regulatory elements in the SPL family members were studied. Based on RNA-sequencing data, gene expression analysis was performed, revealing that CcSPL2.1, 3 and 13A were significantly upregulated for salt-tolerance and CcSPL14 and 15 were upregulated in a salt-susceptible cultivar. Real-time qPCR validation indicated that CcSPL3, 4, 6 and 13A were upregulated under salt stress conditions. Therefore, molecular docking was performed against the proteins of two highly expressed genes (CcSPL3 and CcSPL14 ) with three ligands: abscisic acid, gibberellic acid and indole-3-acetic acid. Afterward, their binding affinity was obtained and three-dimensional structures were predicted. In the future, our study may open avenues for harnessing CcSPL genes in pigeon pea for enhanced abiotic stress resistance and developmental traits.


Assuntos
Cajanus , Cajanus/genética , Cajanus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Filogenia , Simulação de Acoplamento Molecular , Estresse Fisiológico/genética , Flores/metabolismo
5.
BMC Genomics ; 25(1): 95, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262915

RESUMO

BACKGROUND: Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS: We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION: The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.


Assuntos
Arabidopsis , Cajanus , Cicer , Phaseolus , Verduras , Soja
6.
Funct Plant Biol ; 512024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38266279

RESUMO

Pigeonpea (Cajanus cajan ) production can be affected by the spotted pod borer (Maruca vitrata ). Here, we identified biochemical changes in plant parts of pigeonpea after M. vitrata infestation. Two pigeonpea genotypes (AL 1747, moderately resistant; and MN 1, susceptible) were compared for glyoxalase and non-glyoxalase enzyme systems responsible for methylglyoxal (MG) detoxification, γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST) and glutathione content in leaves, flowers and pods under control and insect-infested conditions. MN 1 had major damage due to M. vitrata infestation compared to AL 1747. Lower accumulation of MG in AL 1747 was due to higher activities of enzymes of GSH-dependent (glyoxylase I, glyoxylase II), GSH-independent (glyoxalase III) pathway, and enzyme of non-glyoxalase pathway (methylglyoxal reductase, MGR), which convert MG to lactate. Decreased glyoxylase enzymes and MGR activities in MN 1 resulted in higher accumulation of MG. Higher lactate dehydrogenase (LDH) activity in AL 1747 indicates utilisation of MG detoxification pathway. Higher glutathione content in AL 1747 genotype might be responsible for efficient working of MG detoxification pathway under insect infestation. Higher activity of γ-GCS in AL 1747 maintains the glutathione pool, necessary for the functioning of glyoxylase pathway to carry out the detoxification of MG. Higher activities of GST and GPX in AL 1747 might be responsible for detoxification of toxic products that accumulates following insect infestation, and elevated activities of glyoxylase and non-glyoxylase enzyme systems in AL 1747 after infestation might be responsible for reducing reactive cabanoyl stress. Our investigation will help the future development of resistant cultivars.


Assuntos
Cajanus , Mariposas , Animais , Cajanus/química , Cajanus/genética , Aldeído Pirúvico , Mariposas/fisiologia , Folhas de Planta , Glutationa
7.
Genes Genomics ; 46(1): 65-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985548

RESUMO

BACKGROUND: Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE: Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS: The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS: 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION: In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.


Assuntos
Cajanus , Transcriptoma , Cajanus/genética , Secas , Perfilação da Expressão Gênica , Genótipo
8.
Int J Biol Macromol ; 257(Pt 2): 128559, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061506

RESUMO

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important grain legume crop with a broad range of 90 to 300 days for maturity. To identify the genomic variations associated with the early maturity, we conducted whole-genome resequencing of an early-maturing pigeonpea mutant TAT-10 and its wild type parent T21. A total of 135.67 and 146.34 million sequencing reads were generated for T21 and TAT-10, respectively. From this resequencing data, 1,397,178 and 1,419,904 SNPs, 276,741 and 292,347 InDels, and 87,583 and 92,903 SVs were identified in T21 and TAT-10, respectively. We identified 203 genes in the pigeonpea genome that are homologs of flowering-related genes in Arabidopsis and found 791 genomic variations unique to TAT-10 linked to 94 flowering-related genes. We identified three candidate genes for early maturity in TAT-10; Suppressor of FRI 4 (SUF4), Early Flowering In Short Days (EFS), and Probable Lysine-Specific Demethylase ELF6. The variations in ELF6 were predicted to be possibly damaging and the expression profiles of EFS and ELF6 also supported their probable role during early flowering in TAT-10. The present study has generated information on genomic variations associated with candidate genes for early maturity, which can be further studied and exploited for developing the early-maturing pigeonpea cultivars.


Assuntos
Cajanus , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Genoma de Planta/genética , Genes de Plantas , Locos de Características Quantitativas , Genômica , Cajanus/genética
9.
Plant Biotechnol J ; 22(1): 98-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688588

RESUMO

As a multifunctional hormone-like molecule, melatonin exhibits a pleiotropic role in plant salt stress tolerance. While actin cytoskeleton is essential to plant tolerance to salt stress, it is unclear if and how actin cytoskeleton participates in the melatonin-mediated alleviation of plant salt stress. Here, we report that melatonin alleviates salt stress damage in pigeon pea by activating a kinase-like protein, which interacts with an actin-depolymerizing factor. Cajanus cajan Actin-Depolymerizing Factor 9 (CcADF9) has the function of severing actin filaments and is highly expressed under salt stress. The CcADF9 overexpression lines (CcADF9-OE) showed a reduction of transgenic root length and an increased sensitivity to salt stress. By using CcADF9 as a bait to screen an Y2H library, we identified actin depolymerizing factor-related phosphokinase 1 (ARP1), a novel protein kinase that interacts with CcADF9. CcARP1, induced by melatonin, promotes salt resistance of pigeon pea through phosphorylating CcADF9, inhibiting its severing activity. The CcARP1 overexpression lines (CcARP1-OE) displayed an increased transgenic root length and resistance to salt stress, whereas CcARP1 RNA interference lines (CcARP1-RNAi) presented the opposite phenotype. Altogether, our findings reveal that melatonin-induced CcARP1 maintains F-actin dynamics balance by phosphorylating CcADF9, thereby promoting root growth and enhancing salt tolerance.


Assuntos
Cajanus , Melatonina , Melatonina/farmacologia , Melatonina/metabolismo , Actinas/metabolismo , Cajanus/genética , Destrina/metabolismo , Tolerância ao Sal/genética , Fosforilação , Citoesqueleto de Actina/metabolismo
10.
Plant Biotechnol J ; 22(1): 181-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37776153

RESUMO

Aluminium (Al) toxicity decreases crop production in acid soils in general, but many crops have evolved complex mechanisms to resist it. However, our current understanding of how plants cope with Al stress and perform Al resistance is still at the initial stage. In this study, the citrate transporter CcMATE35 was identified to be involved in Al stress response. The release of citrate was increased substantially in CcMATE35 over-expression (OE) lines under Al stress, indicating enhanced Al resistance. It was demonstrated that transcription factor CcNFYB3 regulated the expression of CcMATE35, promoting the release of citrate from roots to increase Al resistance in pigeon pea. We also found that a Long noncoding RNA Targeting Citrate Synthase (CcLTCS) is involved in Al resistance in pigeon pea. Compared with controls, overexpression of CcLTCS elevated the expression level of the Citrate Synthase gene (CcCS), leading to increases in root citrate level and citrate release, which forms another module to regulate Al resistance in pigeon pea. Simultaneous overexpression of CcNFYB3 and CcLTCS further increased Al resistance. Taken together, these findings suggest that the two modules, CcNFYB3-CcMATE35 and CcLTCS-CcCS, jointly regulate the efflux and synthesis of citrate and may play an important role in enhancing the resistance of pigeon pea under Al stress.


Assuntos
Cajanus , RNA Longo não Codificante , Ácido Cítrico/metabolismo , Cajanus/genética , Alumínio/toxicidade , Alumínio/metabolismo , Citrato (si)-Sintase , Citratos/metabolismo
11.
J Ethnopharmacol ; 322: 117623, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38128890

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cajanus cajan (L) Millsp (Fabaceae) seed decoction is used by traditional healers in Nigeria as nerve tonic, hence, could be beneficial in the treatment of Parkinson's disease (PD), a progressive and debilitating neurodegenerative disease that imposes great burden on the healthcare system globally. AIM OF THE STUDY: This study aimed at investigating the neuroprotective effect of ethanol seed extract of Cajanus cajan (CC) in the treatment of rotenone-induced motor symptoms and non-motor symptoms associated with PD. MATERIALS AND METHODS: To assess the protective action of CC on rotenone-induced motor- and non-motor symptoms of PD, mice were first pretreated with CC (50, 100 or 200 mg/kg, p.o.) an hour before oral administration of rotenone (1 mg/kg, p.o, 0.5% in carboxyl-methylcellulose) for 28 consecutive days and weekly behavioural tests including motor assessment (open field test (OFT), rotarod, pole and cylinder tests) and non-motor assessment (novel object recognition (NOR), Y-maze test (YM), forced swim and tail suspension, gastric emptying and intestinal fluid accumulation tests) were carried out. The animals were euthanized on day 28 followed by the collection of brain for assessment of oxidative stress, inflammatory markers and immunohistochemical analysis of the striatum (STR) and substantia nigra (SN). Phytochemicals earlier isolated from CC were docked with protein targets linked with PD pathology such as; catechol-O-methyltransferase (COMT), tyrosine hydroxylase (TH) and Leucine rich receptor kinase (LRRK). RESULTS: this study showed that CC significantly reduced rotenone-induced spontaneous motor impairment in OFT, pole, cylinder and rotarod tests in mice as well as significant improvement in non-motor features (significant reversal of rotenone-induced deficits discrimination index and spontaneous alternation behaviour in NORT and YM test, respectively, reduction in immobility time in forced swim/tail suspension test, gastrointestinal disturbance in intestinal transit time in mice. Moreso, rotenone-induced neurodegeneration, oxidative stress and neuroinflammation were significantly attenuated by CC administration. In addition, docking analysis showed significant binding affinity of CC phytochemicals with COMT, TH and LRRK2 receptors. CONCLUSION: Cajanus cajan seeds extract prevented both motor and non-motor features of Parkinson disease in mice through its antioxidant and anti-inflammatory effects. Hence, could be a potential phytotherapeutic adjunct in the management of Parkinson disease.


Assuntos
Cajanus , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/complicações , Rotenona/toxicidade , Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/uso terapêutico , Neuroproteção , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Modelos Animais de Doenças
12.
Chemosphere ; 346: 140681, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951403

RESUMO

Cadmium (Cd) is absorbed by plant roots from soil along with essential nutrients and affects plant growth and productivity. Methyl jasmonate (Me-JA) play important roles to mitigate Cd toxicity in plants. We have investigated the role of Me-JA to ameliorate Cd toxicity in Pigeon pea (Cajanus cajan). Plant root growth, biomass, cellular antioxidant defense system and expression of key regulatory genes in molecular and signaling process have been analyzed. Two Cajanus cajan varieties AL-882 and PAU-881 were grown at 25 °C, 16/8h light/dark conditions in three biological replicates at 5 mM Cd concentration, three concentration of Me-JA (0, 10 nM, 100 nM) and two concentrations in combination of Me-JA + Cd (10 nM Me-JA +5 mM Cd, 100 nM Me-JA +5 mM Cd). The seedlings were exposed to Cd stress consequently plants showed decrease in primary root growth (60.71%, in AL-882 and 8.33%, in PAU-881), shoot and root biomass and antioxidant enzymes activities. Me-JA treatment resulted in increased primary root growth (63.64%, in AL-882) and overall plant biomass. Oxidative stress generated due to Cd stress was counter balanced by Me-JA treatment. Me-JA reduced H2O2 free radicals formation and enhanced antioxidant enzyme activities and phenolic content in stressed seedlings. Me-JA treatment increased expression of CALM, IP3, CDPK2, MPKs (involved in calcium and kinase signaling pathways) and reduced expression of metal transporters (IRT1 and HMA3) genes. This reduction in metal transporters gene expression is a probable reason for low toxicity effect of Cd in root after Me-JA treatment which has potential implications in reducing the risk of Cd in the food chain.


Assuntos
Antioxidantes , Cajanus , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cádmio/metabolismo , Cajanus/metabolismo , Fenol/metabolismo , Fenóis/metabolismo , Plântula , Flavonoides
13.
Sci Rep ; 13(1): 16627, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789026

RESUMO

The study investigated the effect of germination on pigeon pea flour's physico-functional (pH, color, water and oil absorption capacities, swelling and foaming capacities and bulk densities) and proximate, total polyphenols and antioxidant activity. The physico-functional and proximate parameters were determined using standard protocols. The color analysis showed that germination significantly increased the flour samples' lightness (L*) (70.7; p = 0.009) by almost 1.5-fold. Germination resulted in almost 1.1 times higher oil absorption capacity than the control (219.9%; p = 0.022). The foaming capacity of the germinated samples significantly (p = 0.015) increased by 6.4%. Germination significantly reduced the loose bulk density (0.54 vs 0.63; p = 0.012) but significantly increased the tapped bulk density (0.84 vs 0.77; p = 0.002). The germinated samples recorded significantly (1.62%; p = 0.010) lower crude fat, about 1.2 times lower than the raw flour. Germination significantly increased the flour's total ash (4.2% vs 3.6%; p = 0.003) and crude protein (11.6% vs 9.4%; p = 0.047) content. Germinated pigeon pea flour will perform better in formulating baked products, aerated foods and food extenders than non-germinated pigeon pea flour. Hence, the germination of pigeon peas should be encouraged because it harnesses the functional and proximate attributes measured.


Assuntos
Cajanus , Ingredientes de Alimentos , Cajanus/metabolismo , Farinha/análise , Alimento Funcional , Antioxidantes/metabolismo
14.
Syst Appl Microbiol ; 46(5): 126454, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37703769

RESUMO

Cajanus cajan L. (guandul) is commonly cultivated in Dominican Republic where this legume is a subsistence crop. Here we identified through MALDI-TOF MS several rhizobial strains nodulating C. cajan in two Dominican locations as Bradyrhizobium yuanmingense. The phylogenetic analysis of recA and glnII housekeeping genes showed that these strains belong to a wide cluster together with the type strain of B. yuanmingense and other C. cajan nodulating strains previously isolated in Dominican Republic. The comparison of genomes from strains representative of different lineages within this cluster support the existence of several genospecies within B. yuanmingense, which is the major microsymbiont of C. cajan in Dominican Republic where it is also nodulated by Bradyrhizobium cajani and Bradyrhizobium pachyrhizi. The analysis of the symbiotic nodC gene showed that the C. cajan nodulating strains from the B. yuanmingense complex belong to two clusters with less than 90% similarity between them. The strains from these two clusters showed nodC gene similarity values lower than 90% with respect to the remaining Bradyrhizobium symbiovars and then they correspond to two new symbiovars for which we propose the names americaense and caribense. The results of the nodC gene analysis also showed that C. cajan is nodulated by the symbiovar tropici, which has been found by first time in this work within the species Bradyrhizobium pachyrhizi. These results confirmed the high promiscuity degree of C. cajan, which is also nodulated by the symbiovar cajani of Bradyrhizobium cajani in Dominican Republic.


Assuntos
Bradyrhizobium , Cajanus , Fabaceae , Cajanus/genética , República Dominicana , Nódulos Radiculares de Plantas , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Simbiose/genética , DNA Bacteriano/genética
15.
Funct Integr Genomics ; 23(4): 311, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751043

RESUMO

Pigeon pea is an important protein-rich pulse crop. Identification of flowering master regulators in pigeon pea is highly imperative as indeterminacy and late flowering are impediments towards yield improvement. A genome-wide analysis was performed to explore flowering orthologous groups in pigeon pea. Among the 412 floral orthologs identified in pigeon pea, 148 genes belong to the meristem identity, photoperiod-responsive, and circadian clock-associated ortholog groups. Our comparative genomics study revealed purifying selection pressures (ka/ks) on floral orthologs, and duplication patterns and evolution through synteny with other model species. Phylogenetic analysis of floral genes substantiated a connection between pigeon pea plant architecture and flowering time as all the PEBP domain-containing genes belong to meristem identity floral networks of pigeon pea. Expression profiling of eleven major orthologs in contrasting determinate and indeterminate genotypes indicated that these orthologs might be involved in flowering regulation. Expression of floral inducer, FT, and floral repressor, TFL1, was non-comparable in indeterminate genotypes across all the developmental stages of pigeon pea. However, dynamic FT/TFL1 expression ratio detected in all tissues of both the genotypes suggested their role in floral transition. One TFL1 ortholog having high sequence conserveness across pigeon pea genotypes showed differential expression indicating genotype-dependent regulation of this ortholog. Presence of conserved 6mA-methylation patterns in light-responsive elements and in other cis-regulatory elements of FT and TFL1 across different plant genotypes indicated possible involvement of epigenetic regulation in flowering.


Assuntos
Cajanus , Cajanus/genética , Epigênese Genética , Filogenia , Genótipo , Genômica
16.
Nutrients ; 15(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764747

RESUMO

Cajanus cajan (L.) Millsp., also known as pigeon pea, has roots that have exhibited much pharmacological potential. The present study was conducted to assess the safe dose of the ethanolic extract of C. cajan roots (EECR95) and to analyze the main soy isoflavones contents. In vitro, we investigated the mutagenicity and cytotoxic effect of EECR95 on Salmonella typhimurium-TA98 and TA100 (by Ames tests) and RAW 264.7, L-929, and HGF-1 cell lines (by MTT tests) for 24 h of incubation. We found no mutagenic or cytotoxic effects of EECR95. After administration of 0.2 or 1.0 g/kg bw of EECR95 to both male and female Wistar rats for 90 days, there were no significant adverse effects on the behaviors (body weight, water intake, and food intake), organ/tissue weights, or immunohistochemical staining, and the urine and hematological examinations of the rats were within normal ranges. EECR95 potentially decreases renal function markers in serum (serum uric acid, BUN, CRE, and GLU) or liver function markers (cholesterol, triglyceride, and glutamic-pyruvate-transaminase (GPT)). We also found that EECR95 contained five soy isoflavones (genistein, biochanin A, daidzein, genistin, and cajanol), which may be related to its hepatorenal protection. Based on the high dose (1.0 g/kg bw) of EECR95, a safe daily intake of EECR95 for human adults is estimated to be 972 mg/60 kg person/day.


Assuntos
Antineoplásicos , Cajanus , Isoflavonas , Adulto , Masculino , Humanos , Feminino , Animais , Ratos , Cajanus/química , Ratos Wistar , Ácido Úrico , Isoflavonas/farmacologia , Rim/fisiologia
17.
J Appl Genet ; 64(4): 615-644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37624461

RESUMO

Plant ATP-binding cassette (ABC) protein family is the largest multifunctional highly conserved protein superfamily that transports diverse substrates across biological membranes by the hydrolysis of ATP and is also the part of the several other biological processes like cellular detoxification, growth and development, stress biology, and signaling processes. In the agriculturally important legume crop Cajanus cajan, a genome-wide identification and characterization of the ABC gene family was carried out. A total of 159 ABC genes were identified that belong to eight canonical classes CcABCA to CcABCG and CcABCI based on the phylogenetic analysis. The number of genes was highest in CcABCG followed by CcABCC and CcABCB class. A total of 85 CcABC genes were found on 11 chromosomes and 74 were found on scaffold. Tandem duplication was the major driver of CcABC gene family expansion. The dN/dS ratio revealed the purifying selection. The phylogenetic analysis revealed class-specific eight superclades which reflect their functional importance. The largest clade was found to be CcABCG which reflects their functional significance. CcABC proteins were mainly basic in nature and found to be localized in the plasma membrane. The secondary structure prediction revealed the dominance of α-helix. The canonical transmembrane and nucleotide binding domain, signature motif LSSGQ, Walker A, Walker B region, and Q loop were also identified. A class-specific exon-intron pattern was also observed. In addition to core elements, different cis-acting regulatory elements like stress, hormone, and cellular responsive were also identified. Expression profiling of CcABC genes at various developmental stages of different anatomical tissues was performed and it was noticed that CcABCF3, CcABCF4, CcABCF5, CcABCG66, and CcABCI3 had the highest expression. The results of the current study endow us with the further functional analysis of Cajanus ABC in the future.


Assuntos
Cajanus , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cajanus/genética , Cajanus/metabolismo , Filogenia , Verduras/metabolismo , Trifosfato de Adenosina/metabolismo
18.
Plant Foods Hum Nutr ; 78(3): 574-583, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37597067

RESUMO

Cajanus cajan [pigeon pea (PP)] is an important legume crop for subsistence agriculture and its seeds are an alternative plant-based protein source. PP protein isolates (PPI) are able to form heat-induced gels that could be used for food applications. The aim of this work was to study the influence of pH (2.1, 3.9, 6.3, and 8.3) and ionic strength (µ) (0.10 and 0.54) on thermal stability and thermal gelation of PPI obtained by alkaline extraction (pH 8.0) and isoelectric precipitation. Thermal stability of PPI changed with pH variation at low ionic strength (µ = 0.10), decreasing this dependence with the increase of ionic strength (µ = 0.54). At µ = 0.10, gelation capacity of PPI was lower at pH 2.1 and pH 3.9. These gels presented a coarse network, which entails low WHC. At pH 6.3 and pH 8.3, gels showed a solid-like character with a compact and homogeneous matrix, with better WHC. At µ = 0.54, gel formation was favoured at pH 2.1 and pH 3.9. G'20/G'95 ratio values and differential solubility results suggest that hydrogen bonds and electrostatic interactions could play an important role in gel formation at pH 6.3 and pH 8.3.


Assuntos
Cajanus , Fabaceae , Proteínas de Plantas , Sementes , Concentração de Íons de Hidrogênio
19.
J Nat Med ; 77(4): 858-866, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37462863

RESUMO

Four new stilbenes (1-4) and one new flavonoid (5), named cajanines D-H, together with three known stilbenes (6-8) were isolated from the leaves of Cajanus cajan (L.) Millsp. (pigeon pea). The structures of these compounds were elucidated unambiguously on the basis of IR, 1D, and 2D NMR, as well as HRESIMS data. Structurally, stilbenes 1-4 bore an isopentyl side chain, and further hydroxylation of compounds 1-3 generated a greater variety of structural forms. Compound 5 was a flavonoid owning an isopentyl side chain. Besides, antibacterial activity of the isolated compounds against Staphylococcus aureus, Bacillus cereus, and Escherichia coli was studied in vitro. Compounds 1-8 were endowed with profound antibacterial activity. Among them, the MIC values of compounds 4, 6, and 7 against S. aureus were 1.56, 0.78, and 0.78 µg/mL, respectively, among which 6 and 7 had better antibacterial activity than the positive control Vancomycin with the MIC values of 1.56 µg/mL. Additionally, the anti-SARS-CoV-2 main protease activity of all the isolated compounds was evaluated, and it was worth mentioning that the IC50 values of compounds 5-7 were 8.27, 4.65, and 8.30 µM, respectively, being comparable to the positive control Ebselen. Our findings may provide valuable guidance for the application of stilbenes as lead compounds in the future for the development of drugs with antibacterial or anti-COVID-19 activity.


Assuntos
COVID-19 , Cajanus , Estilbenos , Flavonoides/farmacologia , Cajanus/química , Staphylococcus aureus , Estilbenos/química , SARS-CoV-2 , Antibacterianos/farmacologia
20.
Physiol Plant ; 175(4): e13954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37318225

RESUMO

MYB transcription factor (TF) is one of the largest superfamilies that play a vital role in multiple plant biological processes. However, the MYB family has not been comprehensively identified and functionally verified in Cajanus cajan, which is the sixth most important legume crop. Here, 170 CcR2R3-MYBs were identified and divided into 43 functional subgroups. Segmental and tandem duplications and alternative splicing events were found and promoted the expansion of the CcR2R3-MYB gene family. Functional prediction results showed that CcR2R3-MYBs were mainly involved in secondary metabolism, cell fate and identity, developmental processes, and responses to abiotic stress. Cis-acting element analysis of promoters revealed that stress response elements were widespread in the above four functional branches, further suggesting CcR2R3-MYBs were extensively involved in abiotic stress response. The transcriptome data and qRT-PCR results indicated that most of the CcR2R3-MYB genes responded to various stresses, of which the expression of CcMYB107 was significantly induced by drought stress. Overexpression of CcMYB107 enhanced antioxidant enzyme activity and increased proline and lignin accumulation, thus improving the drought resistance of C. cajan. Furthermore, Overexpression of CcMYB107 up-regulated the expression of stress-related genes and lignin biosynthesis genes after drought stress. Our findings established a strong foundation for the investigation of biological function of CcR2R3-MYB TFs in C. cajan.


Assuntos
Cajanus , Genes myb , Cajanus/genética , Cajanus/metabolismo , Resistência à Seca , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...